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Abstract

Targeting individual consumers has become a hallmark of direct and digital marketing,

particularly as it has become easier to identify customers as they interact repeatedly with

a company. However, across a wide variety of contexts and tracking technologies, com-

panies find that customers can not be consistently identified which leads to a substantial

fraction of anonymous visits in any CRM database. We develop a Bayesian imputation

approach that allows us to probabilistically assign anonymous sessions to users, while ac-

counting for a customer’s demographic information, frequency of interaction with the firm,

and activities the customer engages in. Our approach simultaneously estimates a hierar-

chical model of customer behavior while probabilistically imputing which customers made

the anonymous visits. We present both synthetic and real data studies that demonstrate

our approach makes more accurate inference about individual customers’ preferences and

responsiveness to marketing, relative to common approaches to anonymous visits: nearest-

neighbor matching or ignoring the anonymous visits. We show how companies who use the

proposed method will be better able to target individual customers, as well as infer how

many of the anonymous visits are made by new customers.

Keywords: Bayesian estimation, missing data, imputation, hierarchical modeling,
targeted marketing



1 Introduction and Motivation

An important aspect of marketing practice is the targeting of consumers for differential

promotional activity (cf. Rossi et al. 1996, Gordon 2010). Recent advancements in digital

marketing and loyalty card programs have expanded companies’ ability to track customers,

thus increasing the popularity of targeted marketing (cf. Mulhern 2009, Winer 2009). Many

companies keep extensive customer relationship management (CRM) databases that record

their interactions with individual customers and use this past data to target them. How-

ever, despite the advancements in tracking technologies, companies still find that a large

number of their interactions with their customers can not be matched to a particular cus-

tomer and remain anonymous (Grover and Vriens 2006, Grabowski 2005). Marketers have

long recognized this problem and have established generous incentive programs and other

strategies to reduce anonymous visits (Nunes and Dreze 2006). For example, online retailers

encourage customers to sign up for loyalty programs in order to receive special promotional

emails (Tode 2007, Grant 2008). Yet, with few exceptions, companies consistently report

that a large proportion of visits cannot be tracked back to an existing customer.

There are numerous different contexts where anonymous visits arise. A daily frequenter

of a coffee shop might often pay with her credit card. However, some days she may prefer

to pay with cash, resulting in a record of her purchase in the CRM database that is not

tied to her customer ID. Another case where anonymous visits may occur is when an online

customer frequents a clothing retailer’s website. Although the customer has a user ID and

sometimes logs in to the website, on some days she may browse without logging in, resulting

in an anonymous visit and a loss of information about the customers preferences. Similarly,

a media company with a “freemium” website will often get their paying subscribers to log

in, but not always, if the user just wants to view some free content.

When companies compile customers’ behavioral patterns over time to inform their
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direct marketing strategies, they do not typically attempt to link the anonymous visits to

their other visits. However, there is a lot of potential information in anonymous visits; the

data on anonymous visits still includes the time of visit, as well as the activities that the

unknown customer engaged in.

We propose a Bayesian imputation approach that probabilistically assigns anonymous

visits to customers based on observed behavioral patterns in the CRM database while

simultaneously estimating a hierarchical model of consumer behavior. The model, and

therefore the assignment of anonymous visits, accounts for the timing of visits (relative

to the timing of each customer’s observed visits), as well as the set of activities that the

customer engages in during the visit (relative to the activities that all customers have en-

gaged in). Using our approach, companies can better track the behavior of their customers,

allowing them to better target those customers in the future. Under some circumstances,

our approach could also be used to target a customer during an anonymous visit, based on

real-time inference about their identity.

Accounting for the anonymous visits and probabilistically assigning them to known

customers allows us to deepen our knowledge of each customer, which we will illustrate

increases the precision of targeted advertising to both unidentified and identified customers.

In addition, our model allows us to account for the anonymous visits when estimating

overall features of a company’s customer base. We will show that failing to account for

anonymous visits can lead to erroneous inferences about critical business questions like,

“How effective is my marketing overall?” and “How many customers do I have?”

We should point out that the systems for tracking users, and hence the prevalence of

anonymous visits, varies across different situations. For example, on the web a visit can be

associated with an identified customer through cookies, log-in or because the user clicked

an ad sent to them by email, whereas in a coffee shop, customers can be tracked through
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use of a credit card or loyalty card. The method we develop is agnostic to the tracking

technology; so long as users regularly interact with the company, which we generically call

visits, and engage in activities during those visits, e.g. purchasing or browsing in certain

categories, visiting certain webpages, viewing video content, etc.

To illustrate our method’s ability to assign anonymous visits and infer customers’ re-

sponsiveness to marketing, we present several parameter recovery studies: the first with

simulated data and the second using data from a specialty retailer where the true visits are

known, but we anonymize visits in a non-ignorable way. We compare our approach to the

common practice of removing anonymous visits from the analysis by estimating our hier-

archical consumer behavior model using only the identified visits without the anonymous

imputation step (complete case analysis in the language of missing data). If customers who

tend to make anonymous visits are also the customers who are more (or less) responsive to

marketing, then the missing information is non-ignorable (Little and Rubin 2002) for the

inferential goal of determining the effectiveness of marketing and to the wrong customers.

When this happens, ignoring the anonymous visits results in biased effects, potentially

leading the firm to engage in too little (or too much) marketing. Our synthetic data stud-

ies illustrate this bias and we show that accounting for the anonymous visits using our

Bayesian approach obtains more precise estimates of the effects of marketing actions on

customers.

Our proposed Bayesian approach simultaneously estimates the model and probabilis-

tically assigns the anonymous visits to customers. This is a more coherent approach to

inference than the common practice of imputing the missing data as a first step and then

doing model inference as a separate subsequent step typically without accounting for the

uncertainty in the imputation (albeit multiple imputation can also reflect this uncertainty).

We compare our simultaneous approach to an impute-then-estimate strategy where anony-
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mous visits are first assigned deterministically to customers via nearest-neighbor matching

based on the activities in the visit, and then our model of customer behavior is estimated

from that imputed data. As we will show, this two-step approach underestimates parame-

ter uncertainty by not accounting for the uncertainty in the imputation and can also lead

to bias when the missing data mechanism is non-ignorable.

Like most other applications of Bayesian missing data methods in marketing, we impute

missing values using Bayesian data augmentation (Tanner and Wong 1987), where data is

imputed simultaneously with the model parameters as part of a Markov chain Monte Carlo

sampler (Geman and Geman 1984).

Data augmentation has been used to account for survey non-response (Ying et al. 2006),

analyze split questionnaires (Adigüzel and Wedel 2008), handle covariate information that

is only available in the aggregate (Musalem et al. 2008), and to address the issue of having

some outcomes observed at the individual level and others in the aggregate (Feit et al.

2013). The present work represents a new application of these methods to the important

problem of accounting for anonymous visits when analyzing CRM data.

As a motivation for our general model, we provide an example of a typical CRM data

set with anonymous visits in Table 1. Each row in this data table represents a customer

visit. For the identified visits, the data contains the User ID, the time stamp of the visit,

indicators for which activities the customer engaged in during the visit, and potentially

some demographic information about the customer. When a customer is not identified, we

still have time stamp and the activity indicators; however, we no longer have the customer’s

ID number or (likely) the demographic information.

In the fourth row of Table 1, there is an anonymous visit where an unknown customer

arrived at 13:24:24 on 2010-01-01 and purchased shoes but did not purchase pants1. From

1Note that we use purchase as an example here, but the idea of an activity can be generalized to include
browsing products, consuming media or any other activity that the customer might engage in.
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Table 1: Typical CRM Data Table with Anonymous Visits

Time User ID Activity 1: Shoes Activity 2: Pants Age Gender
j Uj yj1 yj2 Zj1 Zj2

2010-01-01 12:46:49 16 1 0 34 0

2010-01-01 12:50:47 19 1 1 17 1

2010-01-01 13:20:54 3 0 0 19 0

2010-01-01 13:24:24 ? 1 0 ? ?

2010-01-01 13:25:00 27 0 1 45 1

2010-01-01 13:26:07 5 1 1 20 1

2010-01-01 14:10:09 16 1 0 34 0

2010-01-01 15:12:00 12 0 0 12 0

the first and seventh rows in Table 1, we can see that customer 16 visited twice, purchasing

shoes but not pants in both of her visits, which is the same purchasing behavior as the

anonymous visitor. This similarity in purchasing behavior as well as the fact that customer

16 visits more frequently than everyone else both increases the probability (based on the

likelihood function we will define in the next section) that they are the anonymous visitor.

Note that in CRM data like that depicted in Table 1, there are no visits that are

completely missing. All transactions are recorded; the missing data problem arises from

not being able to associate some of those transactions with a specific user ID. This makes

our problem distinct from that of completely missing records in media panel data described

by Goerg et al. (2015), where panelist are supposed to track their own visits, but sometimes

don’t.

The remainder of the paper is as follows. In Section 2, we develop a model of customer

behavior that can be applied to any CRM data set where customers engage in visits and

activities, such as repeated website visits, repeated transactions, regular use of a media
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site, etc. Our model provides both a framework for understanding repeated customer

behavior and a basis for imputing anonymous visits. We outline a Bayesian approach to

missing data for the specific case where some customer visits are anonymous, and where

we also infer how many of the anonymous visits come from new, previously unobserved

customers (along with the imputation of demographics for these unobserved customers).

In Section 3, we compare our approach to two common alternatives, complete case analysis

and impute-then-estimate (via nearest-neighbor matching), and show that our method is

better able to recover individual-level parameters by accounting for anonymous visits, which

leads to better targeting of individual customers. Our approach performs particularly well

relative to the alternatives when there is a substantial number of anonymous visits and

the missingness mechanism is non-ignorable, i.e. correlated with other parameters of the

model. In Section 4, we apply our methodology to a specialty retailer’s dataset where we

have artificially anonymized some visits, and show that the method still performs well when

the data generating mechanism is not known. In Section 5, we conclude with a discussion

of the findings and areas for future study.

2 Bayesian Hierarchical Model for CRM data

2.1 Modeling Customer Activities

The data structure in Table 1 occurs in many contexts, such as repeated website visits, re-

peated transactions at a retailer or a restaurant, or repeated visits to a service provider like

a gym or library. In this section, we lay out a general model for repeated customer behavior

that combines an exponential model for the interarrival times of visits by a customer with a

multivariate probit model for the activities engaged in by that customer. Both models are

embedded in a Bayesian hierarchical framework, where customer demographics can enter
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as covariates for the arrival rate of each customer as well as each customer’s propensity to

engage in activities.

As outlined in Table 1, let j = 1, . . . , n index a set of n observed (but not necessarily

identified) customer visits. The variable Uj ∈ {1, . . . , I} indicates which of the I unique

users made visit j. In this section, where we build up our hierarchical model for consumer

behavior, we will assume that each Uj is observed; we address unknown Uj for anonymous

visits in Section 2.3. At each visit, we observe a set of discrete variables yyyj = (yj1, . . . , yjM )

indicating which of the M possible activities the customer engaged in during that visit. In

our retailer example, yjm takes on values 0 or 1, indicating whether or not the customer

purchased items in category m, such as women’s shoes, housewares, etc. In other appli-

cations, yjm could be ordinal counts or a continuous variable (e.g. dollar spend) in which

case we would need to substitute an appropriate link function.

We model the observed indicators yyyj for the activities engaged in by the customer Uj

during visit j using a multivariate probit regression model (Rossi et al. 2005, Chib and

Greenberg 1998),

yjm =


1 if y?jm > 0,

0 otherwise.

(1)

where y?jm is customer Uj ’s latent underlying utility to engage in activity m on visit j.

In many marketing datasets, there is also the possibility that direct marketing was

sent to customers. We build marketing actions into our multivariate probit framework by

allowing yyy?j = (y?j1, . . . , y
?
jM ) to depend on whether marketing was in-effect during the time

of the visit,

y?jm = νUj ,m + βββTUj ,mXXXjm + ejm where eeej ∼ N(0,ΣΣΣ) (2)

7



whereXXXjm is a vector of length Px that indicates the number of different marketing actions

that the firm took to encourage customers to engage in activity m. In our retail example, if

activity m was the potential purchase of shoes then XXXjm could be a scalar indicator which

takes on the value 1 if there was an advertisement for shoes sent to the customer (at some

specified time period, discussed later) before visit j and 0 otherwise.

The customer-specific parameters in our multivariate probit model consist of inter-

cepts, νUj ,m which characterize customer Uj ’s overall propensity to engage in each activity

m, and coefficients, βββUj ,m, which characterize customer Uj ’s response to visit-specific mar-

keting actions for each activity m. In our retail example, νUj ,shoes would be the underlying

propensity for customer Uj to purchase shoes without any marketing action. If the store

sends this customer an advertisement, their underlying utility for purchasing shoes would

increase by βUj ,shoes,ad. We also have a population-level correlation structure, ΣΣΣ, among

all the activities, as was done in Manchanda et al. (1999), to accommodate the possibility

that some activities tend to occur together during the same visit, e.g., purchasing women’s

tops and women’s skirts.

2.2 Modeling Customer Visits

Note that in Table 1 we also observe a time stamp for each visit. To model the rate of

visitation for each customer, we let aUj ,tj denote the interarrival time between the tj − 1th

visit and the tthj visit by customer Uj . While j indexes the visits among all the customers in

the dataset, tj indexes the visits that correspond to a specific customer, Uj . We assume that

the times between visits follow a heterogeneous covariate-driven exponential distribution

given by

aUj ,tj ∼ Exponential (λUj ,tj ) (3)
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with customer-specific arrival rates λUj ,tj that also can change over time due to marketing

actions taken by the firm. Specifically, we assume that customer Uj ’s arrival rate λUj ,tj

during time period tj is comprised of two components: (i) ωUj ,0, the baseline arrival rate

for that customer (independent of time and marketing activity) and (ii) ωωωUj ,1, a PH -

dimensional vector of effects on that customer’s arrival rate from PH marketing actions,

HHHUj ,tj ,

log λUj ,tj = ωUj ,0 +ωωωUj ,1HHHUj ,tj (4)

Note that some elements of HHHUj ,tj may be the same as XXXjm if there is a marketing ac-

tion that affects both customer Uj ’s arrival rate and propensity to undertake activities

simultaneously.

Figure 1: An Example of a Customer’s Rates of Arrival

We split each customer’s lifespan in the dataset into a series of periods with varying
arrival rates. These periods can start and end with any of the following: a start of a
marketing action, an end of a marketing action, and a visit. We take the product of the
likelihood for all such events for each customer to obtain their arrival likelihood.
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As shown by an example in Figure 1, we can segment each customer’s arrival rates

into periods that begin and end with the start of a marketing action, the expiration of

a marketing action or a visit. Customer Uj visits at a constant underlying baseline rate

ωUj ,0. Upon receiving a marketing action, the customer’s underlying visitation rate changes

to ωUj ,0 + ωUj ,1HUj ,tj and continues at that rate until the marketing action ”expires” at

which point the customers visitation rate drops back to their baseline, ωUj ,0. In Table 2,

we delineate the likelihood function based on these arrival rates for all possible start and

end events for a time segment.

Table 2: Likelihoods for Intervals between Visits

In the absence of a marketing action, customer Uj has an underlying rate of arrival of ωUj ,0.
Upon receiving a marketing action, customer Uj ’s arrival rate increases to ωUj ,0 + ωUj ,1

for a fixed length of time. Fexp is the cumulative distribution function and fexp is the
probability density function for the exponential distribution.

Interval End Event
Interval Start Event Marketing Starts Marketing Expires Visit

Marketing Starts Fexp(tj , ωUj ,0 + ωUj ,1) Fexp(tj , ωUj ,0 + ωUj ,1) fexp(tj , ωUj ,0 + ωUj ,1)
Marketing Expires Fexp(tj , ωUj ,0) Fexp(tj , ωUj ,0 + ωUj ,1) fexp(tj , ωUj ,0)

Visit Fexp(tj , ωUj ,0) Fexp(tj , ωUj ,0 + ωUj ,1)

fexp(tj , ωUj ,0),
if not within marketing period

fexp(tj , ωUj ,0 + ωUj ,1)
if within marketing period

For the example in Figure 1, we can construct the arrival likelihood LλUj
for customer

Uj by taking a product over all the consecutive periods between the start of the dataset
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and terminal time point T .

LλUj
= (ωUj ,0 exp[−ωUj ,0t0])× (1− exp[−ωUj ,0t1])× (1− exp[−(ωUj ,0 + ωUj ,1)t2])

× (ωUj ,0 exp[−ωUj ,0t3])× (1− exp[−ωUj ,0t4])

× ([ωUj ,0 + ωUj ,1] exp[−[ωUj ,0 + ωUj ,1]t5])

× (1− exp[−(ωUj ,0 + ωUj ,1)t6])× (1− exp[−ωUj ,0t7]) (5)

We note that our framework assumes that all direct marketing communications last

for a fixed period of time (similar to Sahni et al. 2014), but not following a Koyck-like

decay function that is sometimes utilized in the literature. We have also not accounted

for any cumulative effect of receiving multiple emails in a single time period. Our focus

is on accounting for the presence of marketing action when we make our anonymous visit

imputation and a more complicated advertising response model is outside our scope, but

within the current modeling framework given in equations (4) and (5).

With the likelihood for activities defined in equations 1-2, and the likelihood for arrivals

times defined in equations 3-4, we can now write the joint likelihood function for customer

visits,

P (y,A, Uy,A,Uy,A,U |β, ν,Σ, y?β, ν,Σ, y?β, ν,Σ, y?) =
n∏
j=1

I∏
Uj=1

[(

∫
GUj,M

. . .

∫
GUj,1

ΦM{y?y?y?j |νUj + βTUj
XjνUj + βTUj
XjνUj + βTUj
Xj ,ΣΣΣ}dy?y?y?j)LλUj

]
I(Uj)

(6)

Note that arrival times are censored given that no arrivals are observed after a terminal

time point T (which enters the likelihood through the survival LλUj
term).

In our Bayesian approach, we specify priors for all customer-specific parameters θθθTi =

(νννi,βiβiβi, ωi0,ωi,1ωi,1ωi,1) as a function of both customer-specific demographic covariatesZZZi = (Zi1, Zi2, . . . , ZiS)

and population-level regression coefficients, ΓΓΓ. Specifically, we model each customer’s pa-

11



rameter vector, θθθi, with a hierarchical multivariate regression,

θθθi =



νννi

βββi

ωi0

ωωωi1

logit δi


∼MVN(ΓZiΓZiΓZi,Ω,Ω,Ω) (7)

which allows for correlation between different customer-specific parameters. We impose

conjugate multivariate normal and inverse Wishart prior distributions on the population-

level model parameters, Γ,ΩΓ,ΩΓ,Ω, and ΣΣΣ (Gelman et al. 2003) which is also more fully described

in Appendix A. The extra (and yet to be described) customer-specific parameter δi specifies

the propensity for customer i to be anonymous, which we address by extending our model

as given next in Section 2.3.

2.3 Modeling Anonymous Visits

We next address the primary goal of our approach: modeling the anonymous visits in

CRM data. As given in Table 1, Uj = i represents the user ID for visit j, but we must

now account for the fact that Uj can be unknown. We define a missing data indicator Vj

= 1 if the user for visit j is unknown, and 0 otherwise. Let UobsUobsUobs be the subset of UUU when

Vj = 0, and let UmisUmisUmis be the subset of UUU when Vj = 1.

We also let δi be the probability that user i will be anonymous during a visit, i.e., δi is

the probability that Vj=1 conditional on Uj = i. Note that δi is specific to each customer

which allows for some customers to be more likely to make anonymous visits than others.

We will simultaneously estimate both the anonymous customers IDs in UmisUmisUmis and the

parameters of the model using the aforementioned Bayesian data augmentation approach
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where we estimate the joint posterior distribution,

P (θ, Z,Σ, Umisθ, Z,Σ, Umisθ, Z,Σ, Umis|Y,A,B,C,UobsY,A,B,C,UobsY,A,B,C,Uobs) ∝
n∏
j=1

I∏
i=1

[(

∫
GUj,M

. . .

∫
GUj,1

ΦM{y?y?y?j |νUj + βTUj
XjνUj + βTUj
XjνUj + βTUj
Xj ,ΣΣΣ}dy?y?y?j)

× LλUj
× δ(Vj=0)

Uj
(1− δUj )

(Vj=1)]
I(Uj=i)P (θ, Z,Σθ, Z,Σθ, Z,Σ) (8)

2.4 Model Estimation

We estimate the joint posterior distribution of all model parameters, including the customer

IDs for any anonymous visits, using a Gibbs sampler, a Markov chain Monte Carlo method

(Geman and Geman 1984, Rubin and Schenker 1986). Pseudo-code for our Gibbs sampler

is as follows:
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1. Sample a specific user for each missing Uj from a multinomial distribution.

2. Sample y?y?y? from a truncated multivariate normal distribution.

3. Sample θθθi = (νννi,βββi, ωi,0, )
T for each customer.

a. Sample (νννi,βββi) from a conjugate multivariate normal distribution.

b. Sample ωi,0 and ωωωi,1 using a Metropolis-Hastings step (Hastings 1970).

c. Sample logit δi using a Metropolis-Hastings step (Hastings 1970).

4. Sample ΓΓΓ from a conjugate multivariate normal distribution.

5. Sample ΣΣΣ from a conjugate inverse-Wishart distribution.

6. Sample ΩΩΩ from a conjugate inverse-Wishart distribution.

7. Sample ZZZi for each anonymous customer from a conjugate multivariate normal dis-

tribution.

In step 1, we sample a specific user for each anonymous Uj from a multinomial distri-

bution where the probability of visit j being made by user k (conditional on current values

of the other model parameters) is:

P (Umisj = k|YYY ,θθθ,Σ, y?Σ, y?Σ, y?) = (9)
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(
∫
GkM

. . .
∫
Gk1

ΦM{y?y?y?j |νUj ,k + βTUj ,k
XjkνUj ,k + βTUj ,k
XjkνUj ,k + βTUj ,k
Xjk,ΣΣΣ}dy?y?y?j)LλUk

δ
(Vj=1)
k (1− δk)(Vj=0)∑I

i=1(
∫
GiM

. . .
∫
Gi1

ΦM{y?y?y?j |νUj ,i + βTUj ,i
XjiνUj ,i + βTUj ,i
XjiνUj ,i + βTUj ,i
Xji,ΣΣΣ}dy?y?y?j)LλUi

δ
(Vj=1)
i (1− δi)(Vj=0)

Using the probabilities given in (9), we probabilistically select customers who have the

highest probability of making the anonymous visit based on the time of arrival, their

demographic information, and the targeted advertisements they received. Once all UUUmisj

are sampled, we sample the other parameters from their full conditional distributions in

steps 2-7, which are outlined in detail in Appendix 5 . In this way, we simultaneously obtain

draws from the posterior of UUUmisj and the model parameters. Thus, we can incorporate the

anonymous visits in our model estimation in a way that utilizes all the information from

both observed and anonymous visits.

2.5 Allowing for Additional Customers among Anonymous Visits

A key issue in the context of CRM data with anonymous visits is accounting for new

customers who have never been identified in the data because all of their visits are anony-

mous. This information is valuable to firms for gauging their total customer base as well

as distinguishing between new and repeat customers in measuring customer lifetime value,

churn rate, and company value.

To infer the number of new customers, we create R potential new customers that could

be assigned to the anonymous visits in pseudo-code Step 1. Within our Gibbs sampling

scheme, we allow for each anonymous visit to be assigned to either an identified customer

or to one of the potential new customers, depending on the distributions of arrival rates

and visit propensities inferred from the data. The true number of unique customers can be

no more than I, the total number of anonymous visits plus the total number of previously

observed customers.

When assigning anonymous visits to new customers, we note that these unobserved
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customers (likely) have missing demographic information that can also be inferred from

the customer’s behavior on the visit. This inference is based on the frequency of visits and

the activities during those visits and how those correlate with demographics among the

identified customers. Estimating their user-specific characteristics may in some cases pro-

vide the company with a more accurate assessment of the demographics of their customer

base, helping them optimize their assortment of products, create appealing advertising,

etc.

To draw the demographics for new customers, we take advantage of the relationship

θθθi ∼MVN(ΓΓΓZZZi,ΩΩΩ) given in equation 7. Following the usual approach to missing regressors

by treating the matrix ΓΓΓ as the regressors, and the ZZZi as the parameter vector, we simply

switch what we consider to be the covariates and regression coefficients. We sample ZZZi for

each new customer as follows:

ZZZi|Ω, U,Γ, θΩ, U,Γ, θΩ, U,Γ, θi ∼MVN(Ẑ̂ẐZ?,VZ?VZ?VZ?) (10)

where Ẑ̂ẐZ? = (ΓΓΓTΩΩΩ−1ΓΓΓ+P0P0P0)−1(ΓΓΓTΩΩΩ−1θθθi+P0ξ0P0ξ0P0ξ0) and VZ?VZ?VZ? = (ΓΓΓTΩΩΩ−1ΓΓΓ+P0P0P0)−1, with P0P0P0 and ξξξ0

being prior parameters that can either be set given a researchers knowledge of demographic

frequencies in their purchasing population, or set as non-informative if appropriate.

2.6 Alternative Approaches to Anonymous Visits

We will compare our Bayesian model for imputing anonymous visits to two common alter-

native approaches for missing customers in CRM data. The most common way to analyze

CRM data with anonymous visits is complete-case analysis: remove the anonymous visits

from the dataset and then proceed with the analysis. Although complete-case analysis

is clearly straightforward, we will demonstrate that it results in a loss of efficiency (i.e.

greater uncertainty in our inference) and can result in bias when the missingness mecha-
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nism is non-ignorable, i.e. correlated with other model parameters (Rubin 1976). In these

situations, the complete cases can not be relied upon as a representative sample of all

possible data (Little and Rubin 2002, Graham et al. 1994).

A more sophisticated alternative would be impute-then-estimate: use a matching al-

gorithm to make a deterministic imputation and then proceed with the analysis. We

illustrate this approach on CRM data with anonymous visits by using nearest-neighbor

matching (Hastie et al. 2009) to match anonymous visits to the closest identified customer

visit based on the observed activities in the visits.

In order to match anonymous visits to the closest observed visit, we define a distance

between each anonymous visit i and each visit k with a known customer based on the

Mahalanobis distance between the vector of activities yyyj in the anonymous visit and the

vectors of activities yyyk from each visit k by a known customer:

d(j, k) = (yyyj − yyyk)TS−1
yy (yyyj − yyyk) (11)

where Syy is an estimate of the covariance matrix of yj across all anonymous and identified

visits. Incorporating the covariance matrix means that categories which have high vari-

ability will carry less weight when finding potential candidates to match to the anonymous

visits. For each anonymous visit k, we then deterministically impute the customer k for

that visit that has the smallest distance d(j, k), randomly breaking ties if needed. We also

note that there are other approaches that could be done to match anonymous visits to

observed visits, such as matching to an observed customer based upon an average across

all their visits (as opposed to matching each anonymous visit to an observed visit).

Once the matching routine is complete, one can proceed with any type of analysis on

the now-complete CRM data. As we show in the next section, this impute-then-estimate

approach works better than the complete case analysis, but still fails to match customers

17



as well as our Bayesian imputation model.

3 Synthetic Data Evaluation

We consider several synthetic data settings to explore how our proposed Bayesian imputa-

tion method performs relative to the alternatives described in Section 2.6. In each case, we

generate data from the model described in Section 2. In our first synthetic data setting,

we generate CRM datasets with anonymous visits where the missingness of the anonymous

visits is ignorable, i.e. customer IDs for visits are missing-at-random. In this situation, we

expect that the complete-case analysis and impute-then-estimate alternative methods will

perform relatively well.

In our second synthetic data setting, we generate CRM datasets with anonymous visits

in a non-ignorable way such that there is a high proportion of anonymous visits and also

a strong correlation between a customer’s propensity to be anonymous and their respon-

siveness to a marketing action. In this setting, we expect that our Bayesian imputation,

which accounts for non-ignorable missing data mechanisms, will be better at recovering

the underlying parameters of the CRM data compared to the alternatives.

In our third synthetic data setting, we generate CRM datasets with anonymous visits in

the same non-ignorable fashion as our second setting, but we reduce the overall proportion

of anonymous visits. With a reduced number of anonymous visits, we expect that the

competitive advantage of our Bayesian imputation approach over the alternatives will be

reduced.

The other settings (characteristics) for our synthetic data were chosen to emulate char-

acteristics of our speciality retailer application in Section 4. We use a large number of

activities (M = 15) in order to improve inference about which customers made the anony-

mous visit. Each generated dataset containes N = 400 customers with a range of anywhere
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from 8 to 22 visits per customer, as there is heterogeneity in the visitation rates between

customers. Customers receive a single marketing action that varies in timing and frequency

across customers. The marketing action has a large effect ωi1 on the arrival rate, with cus-

tomers visiting roughly every second period when not affected by marketing and visiting

roughly 4 times per period when affected by marketing.

3.1 Evaluation of Parameter Recovery

In Table 3, we present results for the recovery of the population-level average effect of

marketing on the customers propensity to visit, a parameter one would expect to be biased

in the data settings where missingness is non-ignorable. The true population value used to

generate the data is reported in the last row of Table 3.

In the first setting, when the missingness mechanism is ignorable, each method is un-

biased even with a large proportion of anonymous visits (45%). We note that the other

model parameters were also recovered by all three methods in this setting. This result

suggests that if the mechanism that leads to anonymous visits is unrelated to other aspects

of consumer behavior, not surprisingly, then most reasonable methods will perform well.

In the second setting, we have the same large proportion of anonymous visits (45%) as

in the first setting, but now there is a non-ignorable missingness mechanism where a high

correlation (0.9) is induced between a customer’s propensity to be anonymous and their

propensity to visit in response to a marketing action. In other words, customers who have

the largest increase in arrival rate in response to marketing are also much more likely to

make an anonymous visit. We see in the middle column of Table 3 that both complete case

analysis and impute-then-estimate have downward biased estimates of the population-level

effect of the marketing action, along with posterior intervals that do not cover the true

value. This downward bias might lead a company to reduce or eliminate marketing that is
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Table 3: Parameter Recovery in Synthetic Data where Missingness is Correlated
with the Effect of a Marketing Action on the Arrival Rate of Customers

Recovery of ΓΓΓω1 , the population-level propensity to visit in response to a marketing action
in a setting where missingness (δi) is correlated with the individual-level propensity to
visit in response to a marketing action (ωi1). Gray indicates that the true parameter was
covered by the estimated posterior interval for ΓΓΓω1 . The last row in each cell indicates the
percent bias.

Setting 1 Setting 2 Setting 3
Ignorable Non- Non-

Ignorable Ignorable

Anonymous
Visit Rate

45% 45% 30%

Correlation between
missingness δi and
marketing effect ωi1

0.0 0.9 0.9

Estimates of Population Average Effect of Marketing on Visits (Γ̂ΓΓω1)

Bayesian 3.86 3.67 3.73
Imputation (3.55,4.12) (3.44,3.93) (3.52,4.04)

0% 4% 2%

Complete Case 3.96 3.51 3.84
Analysis (3.69,4.23) (3.19,3.81) (3.52,4.12)

3% 8% 0%

Impute-then- 3.75 3.56 3.63
Estimate (3.53,3.98) (3.30,3.82) (3.42,3.84)

2% 7% 5%

True value (ΓΓΓω1) 3.83 3.83 3.83
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actually effective, ultimately reducing profits.

In contrast, our Bayesian imputation method which accounts for potential correlations

between missingness and marketing actions, shows little bias in this second setting along

with a posterior interval that covers the true value.

The third setting has the same non-ignorable missingness mechanism but the overall

proportion of anonymous visits is reduced (30%). In this setting with less overall missing-

ness, each method is able to obtain coverage of the true parameter value. As we would

expect, as missingness goes to zero, there is less need to properly account for it in making

inference. However, accounting for the missingness doesn’t hurt; across all three cases, we

find that the Bayesian imputation reliably produces correct estimates.

3.2 Evaluation of Targeted Marketing

In Table 3, we focused on inference for a population-level parameter, but our Bayesian

imputation approach can also lead to improved inference for individual-level parameters.

Companies frequently use CRM databases to identify which customers would be most

responsive to direct marketing, since sending marketing only to those most responsive

customers improves marketing efficiency. In the context of our framework, companies would

want to target customers with the highest expected response to the marketing action on

arrival rates, i.e. customers with the largest values of (ωi0 + ωi1).

In Table 4, we compare each method in terms of the ability to identify the top 100

customers (out of 400 total customers) with the highest true value of (ωi0 + ωi1). Table 4

includes results from both setting 1 and setting 2 which have the same high proportion of

anonymous visits (45%).

Our Bayesian imputation approach does an excellent job of identifying those customers

who are most responsive to marketing, selecting 75 of the true top 100 customers in the
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Table 4: Ability to Identify Responsive Customers in Synthetic Data

We rank order customers in terms of highest propensity to visit in response to receiving a
marketing action (ωi0 +ωi1) using estimates from each method and then select the top 100
customers. We report in this table the number of these top 100 selected customers that
are consistent with the true top 100 customers.

Setting 1 Setting 2

Bayesian Imputation 72 75

Complete Case Analysis 40 46

Impute then Estimate 60 36

correlated setting 2 and 72 of the top 100 in the uncorrelated setting 1. In contrast,

when the anonymous visits are removed from the CRM data (complete case analysis), the

reduced information about each customer leads to identification of only 40 of the top 100

customers in setting 1 and 46 of the top 100 customers in setting 2. The impute-then-

estimate method uses some information in the anonymous visits but does not do as good

of a job as our Bayesian imputation approach, especially in setting 2 with the presence of

correlation between responsiveness and the propensity to make an anonymous visits.

In order to understand why complete case analysis performs so poorly in Setting 1, we

plot the individual-level responsiveness to marketing (ωi,1), in Figure 2. We see that in

the complete case analysis, these estimates are being pulled closer to the population mean

than in the Bayesian imputation method. This results in a “scrambling” in the rankings

of the individual customers in the complete case analysis, hindering the method’s ability

to identify customers with the highest propensity to visit in response to marketing.
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Figure 2: Individual-level Estimates of ωi,1

Estimates of the posterior means of ωi,1 for customers from our Bayesian imputation model
and the complete case analysis model for synthetic data setting 1. The posterior means
from our Bayesian imputation model are indicated by black points and from the complete
case analysis model by blue points.
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3.3 Estimating the Size of the Customer Base

As discussed in Section 2.5, firms also want to know the number of unique customers in their

CRM database, accounting for the fact that some anonymous visits may be new customers

who only visit anonymously. The two alternative methods, complete case analysis and

impute-then-estimate have no way of addressing this possibility, as they both assume that

the total number of customers is the number of observed customers.

We evaluate the ability of our Bayesian imputation approach to recover the true number

of customers in synthetic data setting 2, where there were 400 customers generated but only

398 of those customers made at least one visit, so the true customer base is 398 customers.

Of those 398 customers, three customers were anonymous for all of their visits leading to

395 observed customers.

As described in Section 2.5, our Bayesian imputation model allows for anonymous visits
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to be assigned to new customers, which allows us to estimate a potentially larger customer

base than the number of observed customers. The estimated posterior distribution of the

number of customers from our Bayesian imputation model is shown in Figure 3. We see

that the estimated posterior distribution covers the true size of the customer base.

Figure 3: Estimated Size of the Customer Base

Estimated posterior distribution from our Bayesian imputation model of the number of
customers in synthetic data setting 2. The number of observed customers is indicated by
a blue line and the true size of the customer base is indicated by the red line.
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3.4 Summary of Synthetic Data Study

Our synthetic data settings have illustrated the importance of accounting for anonymous

visits when analyzing CRM data. Complete case analysis is commonly used in practice but

performs much worse at identifying the customers most responsive to marketing, which is

one of the main motivations for keeping and analyzing CRM data. In addition, complete

case analysis can not be used to estimate the number of additional anonymous customers

when evaluating the total size of the customer base in CRM data.

This synthetic study, where we can manipulate the data generating process, also allows
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us to illustrate a point that is well-understood in the missing data literature, but perhaps

less prevalent in marketing. When missingness is unrelated to other parameters of inter-

est (missing-at-random), then complete case analysis results in unbiased but less efficient

inference. However, when missingness is related to other parameters, then analyzing only

the complete cases can produce biased estimates, as in setting 2 in Section 3.1.

The more sophisticated impute-then-estimate alternative method of imputing anony-

mous visits deterministically (and then proceeding with model inference) performs sub-

stantially worse than our Bayesian imputation method at identifying customers who are

most responsive to marketing. In order to assess the performance of these methods in the

case where the data does not perfectly conform to a known parametric model, we apply

all three methods to a real CRM dataset next in Section 4.

4 Application to a Retail CRM Database

In this section, we examine a dataset describing customers’ online and in-store transactions

with an international speciality retailer (which prefers to remain anonymous) that is typical

of most retail CRM data. The data consists of 24,000 identified customers’ transactions

over a two-year period. We will consider each transaction as a visit in our terminology

from Section 2. Customers are identified by their payment method (i.e., credit or debit

card number) and/or the name and address (provided for shipping of online orders).

For each transaction, we define the customer activities as binary indicators of which

product categories that were purchased by the customer during that visit. For each trans-

action, a customer may purchase in any of 21 product categories (e.g. accessories, holiday,

home furnishings, women’s tops, etc.). On average, customers purchased from 2.15 cate-

gories per visit. This vector of activities gives us a way to identify different patterns of

customer behavior during visits.
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The data also includes a small number of customer characteristics including age, gender,

whether the customer has created a wishlist with the retailer, and distance from nearest

store to place of residence. The mean age of observed customers is 38 and the median age

is 34 years old. 85% of the customers are women and 20% of customers have a wishlist.

The company also regularly sends emails to their customers which promote new product

lines and offer promotional discounts. In applying our model to this data, these emails are

taken as the marketing action. Based on discussion with the retailer, we assume that the

effect of an email lasts one week2.

For the purposes of illustrating the imputation method, we focus our analysis on 100

customers in the dataset who a) made a purchase within the first three weeks of the

observation period, which allows us to assume they were active from the beginning of the

observation period, and b) have at least two transactions during a period when an email

was in effect and at least two transactions when an email was not in effect so that the effect

of marketing is well-identified for each customer.

We present exploratory evidence of the effect of email on arrival rates in Figure 4, which

plots for each customer the ratio of the arrival rate when emails are in effect (i.e., within

a week after they were received) versus when emails are not in effect. Most customers

are above the line of ratio equal to 1, indicating that they transact more often when they

have received an email within the past week than when they have not. A binomial test

confirms a positive effect of emails (p < 0.001), which we will model more explicitly using

our hierarchical model of customer behavior.

We also explored potential effect of emails on the propensity to purchase in specific

categories (the “activities” in this application) and found no significant effect. However,

this is not surprising as emails from this retailer generally do not promote specific categories,

2Other research that also uses data from this retailer confirms that the effect of an email lasts approxi-
mately one week (Zantedeschi et al. 2015).
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Figure 4: Visitation Rates with Emails Versus without Emails

For each customer, we plot the ratio of the arrival rate (number of visits divided by total
time) to the arrival rate when email was not in effect. Horizontal line at ratio=1 indicates
equality between the arrival rate when email is in effect versus when email is not in effect.
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but rather focus on blanket offers, e.g., “free shipping”.

To evaluate each method against a ground truth, we estimate our hierarchical model

on the full data to obtain an initial set of “true” parameter estimates in the absence of

anonymous visits. With this complete dataset, the estimated population-level baseline

rate of arrival (without having received a discount email) is 0.62 with a posterior interval

of [0.56,0.68], which is quite similar to the synthetic data in Section 3. The estimated

population average effect of emails on the propensity to visit is 2.16 with a posterior

interval of [2.06,2.33] which means that, on average a customer visits approximately once

every second week, whereas upon receiving an email, the customer will visit approximately

twice in one week.

We create a test-bed for our Bayesian imputation model (vs. the alternative methods)
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by artificially creating anonymous visits in the data via the removal of customer IDs from

some transactions. As in our synthetic data study (Section 3), we consider three different

settings for creating anonymous visits. In setting 1, we anonymize visits completely at

random whereas in setting 2, we induce a correlation between customers’ propensity to be

missing and the estimated effect of marketing on propensity to visit, i.e. cor(δi, ωi1) = 0.9.

Setting 3 also induces a correlation, but has a lower overall rate of anonymous visits.

4.1 Evaluation of Parameter Recovery

In Table 5, we provide estimates and posterior intervals for the population average effect

of emails on the propensity to visit (Γ̂̂Γ̂Γω1) from each method in all three data settings. We

compare these estimates to the “true” value of ΓΓΓω1 = 2.16 with a posterior interval of [2.06,

2.33] given in the last row of Table 5, which we estimated from the complete data without

anonymous visits.

We see similar trends in Table 5 as in our synthetic data studies in Section 3. Our

Bayesian imputation obtains coverage of the true complete data estimate in each setting,

whereas complete case analysis underestimates the effect of the marketing action in both

setting 1 and setting 2 where there is a high proportion of anonymous visits. At the lower

missingness level (setting 3), complete case analysis is able to recover the complete data

estimate. The impute-then-estimate method is unable to recover the true complete data

estimate in setting 2 where there is a high proportion of anonymous visits and there is a

correlation between the propensity to be anonymous and the propensity to visit in response

to marketing.

In Table 6, we provide estimates and posterior intervals for the population average

baseline visit rate (Γ̂̂Γ̂Γω0) from each method in all three data settings. We compare these

estimates to the true value of ΓΓΓω0 = 0.62 with a posterior interval of [0.56, 0.68] given in
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Table 5: Estimating Effect of Marketing Action in Retail CRM Data with Ar-
tificial Anonymous Visits

Recovery of the population average propensity to visit in response to a marketing action
(Γ̂̂Γ̂Γω1) for all three methods in three data settings. Gray indicates that the true parame-
ter was covered by the posterior interval. The last row in each cell indicates the percent
difference from the “true” complete data estimate.

Setting 1 Setting 2 Setting 3
Ignorable Non- Non-

Ignorable Ignorable

Proportion of
Anonymous Visits

45% 45% 30%

Correlation between
missingness and
marketing effect (δi, ωi1)

0 0.9 0.9

Estimates of Population Average Effect of Emails on Visits (Γ̂̂Γ̂Γω1)

Bayesian 2.05 2.18 2.19
Imputation (1.79,2.51) (1.99,2.37) (1.95,2.45)

5% 0% 1%

Complete Case 1.97 1.83 2.17
Analysis (1.87,2.06) (1.69,1.98) (1.83,2.47)

9% 15% 0%

Impute then 2.15 1.97 2.05
Estimate (1.95,2.35) (1.86,2.10) (1.90,2.19)

0% 9% 5%

Complete Data (“True”) 2.16 2.16 2.16
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the last row of Table 6, which we estimated from the complete data before anonymizing

some of the visits.

Our Bayesian imputation obtains coverage of the true complete data estimate in each

setting, whereas complete case analysis consistently underestimates the baseline arrival

rate, since it discards all of the anonymous visits. The complete case analysis estimates

only gets closer to the complete data truth in setting 3, where the proportion of anonymous

visits is lower.

In contrast to complete case analysis, the impute-then-estimate method is better able

to recover the baseline visit rate since it does not ignore the anonymous visits. However,

referring back to Table 5, impute-then-estimate was not able to recover the effect of the

marketing action since it matches those anonymous visits to the wrong customers and does

not account for the uncertainty in those matches.

4.2 Evaluation of Targeted Marketing

We next evaluate the ability of each missing data method to identify customers who would

be most responsive to direct marketing based on the estimated individual-level parameters

of those customers. Similar to our synthetic data analysis in Section 3.2, we rank customers

by their visit rate when exposed to email estimated using each of the three methods. We

then compare the top customers identified by each method to the “true” top customers as

ranked by the complete data analysis.

In Table 7, we compare each method in terms of the ability to identify the top 25

customers (out of 100 total customers) with the highest true value of (ωi0 +ωi1) estimated

from the complete data. Table 4 includes results from both setting 1 and setting 2 which

have the same high proportion of anonymous visits (45%).

As in Section 3.2, our Bayesian imputation method performs substantially better than
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Table 6: Estimating Baseline Visit Rate in Retail CRM Data with Artificial
Anonymous Visits

Recovery of the population average propensity to visit in response to a marketing action
(Γ̂̂Γ̂Γω0) for all three methods in three data settings. Gray indicates that the true parameter
was covered by the posterior interval. The last row in each cell indicates the percent
difference from the “true” complete data estimate.

Setting 1 Setting 2 Setting 3
ignorable non non

ignorable ignorable

Proportion of
Anonymous Visits

45% 45% 30%

Correlation between
missingness and
marketing effect (δi, ωi1)

0 0.9 0.9

Estimates of Population Average Baseline Visit Rate(Γ̂̂Γ̂Γω0)

Bayesian 0.61 0.69 0.66
Imputation (0.53,0.69) (0.62,0.75) (0.58,0.74)

2% 11% 6%

Complete Case 0.53 0.51 0.57
Analysis (0.46,0.60) (0.44,0.57) (0.51,0.64)

15% 18% 8 %

Impute then 0.56 0.58 0.58
Estimate (0.48,0.63) (0.50,0.66) (0.52,0.65)

10% 6% 6%

Complete Data (“True”) 0.62 0.62 0.62
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Table 7: Ability to Identify Responsive Customers in Retail CRM Data

We rank order customers in terms of highest propensity to visit in response to receiving a
marketing action (ωi0 + ωi1) using estimates from each method and then select the top 25
customers. We report in this table the number of these top 25 selected customers that are
consistent with the true top 25 customers (estimated from the complete data).

Setting 1 Setting 2

Bayesian Imputation 15 18

Complete Case Analysis 12 2

Impute then Estimate 4 5

either alternative method at targeted marketing, which suggests that our model does a

better job at recovering individual-level parameters. Complete case analysis performs rea-

sonably well in setting 1 where visits were anonymized completely at random, but performs

poorly in setting 2 where the propensity to be anonymous is correlated with marketing re-

sponsiveness across customers. Somewhat surprisingly, the impute-then-estimate method

performs even worse than complete case analysis in setting 2.

The implication of this analysis is that targeting the top 25 customers based on the

estimates using Bayesian imputation (from Setting 2) would result in 13 more visits per

week (among 100 customers) than by using the complete case analysis estimates, which

could lead to substantially more revenue. More specifically, when targeting the top 35

using the Bayesian imputation estimates from Setting 2, you would expect 121 visits that

week from the 100 customers, 107 visits using the complete case analysis, and 110 visits

using the impute-then-estimate method.
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4.3 Summary of Application to Retail CRM Data

Our application to retail CRM data largely confirms the findings of our synthetic data

analysis: our Bayesian imputation model is better suited to estimating the overall effects of

marketing and identifying customers who are highly-responsive to marketing, particularly

when the process that generates anonymous visits is correlated with other parameters of

interest. Although not reported here, we also find that the Bayesian imputation performs

well relative to case complete case analysis when customers propensity to be anonymous is

correlated with other parameters such as the propensity to engage in a particular activity.

This application to real data suggests that our Bayesian imputation method is robust to

minor differences between the model and the true data generating process (as is the case

with any real data.)

5 Conclusion

Nearly every company that tracks customer behavior over time faces the challenge of anony-

mous visits. Regardless of the consumer behavior being tracked or the technology used to

track it, media providers, retailers and service providers who build CRM databases to

record customer interactions all find that they have unidentified, anonymous visits in their

database.

In this paper, we develop a Bayesian imputation method to link anonymous visits to

either previously observed or new customers in a company’s database. We have shown

that by incorporating the additional information in the anonymous visits, companies can

get more accurate estimates of critical parameters such as customer’s responsiveness to

marketing, which can lead to more accurate targeting and greater marketing efficiencies.

Our imputation method is built around a generic hierarchical model of repeated customer
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behavior, including customers’ times of arrival, the activities the customers engages in

while visiting, the customer’s demographic information (when observed), and information

on direct marketing that the customer receives. Our estimation procedure probabilistically

imputes which customers made each anonymous visit (based on the similarity of observed

behavior) while simultaneously estimating all model parameters.

We compare our Bayesian imputation method to two common practices, complete case

analysis and impute-then-estimate, and show that our approach performs substantially

better in terms of recovering population-level parameters and recovering customer-level

parameters that can be used for targeted marketing. In addition, unlike these alternative

approaches, our model accounts for the fact that there may be some customers represented

in the data who always remain anonymous.

Our studies highlight a fact that is well-understood in the missing data literature (be-

ginning with Rubin 1978), but perhaps less-well understood in marketing: when the process

that generates missingness is correlated with other model parameters, then the process that

generates the missingness must be modeled or else parameter estimates may be biased. In

our context, it is necessary to model each customers propensity to be anonymous and relate

that missingness to customer preferences and demographics in our hierarchical model. Our

model performs substantially better at recovering population-level parameter particularly

when there are correlations between the propensity to be anonymous and other customer

characteristics such as responsiveness to marketing. Since we can’t know whether missing-

ness is correlated with other important customer characteristics a priori, it makes sense

to adopt the Bayesian imputation approach whenever there is a substantial rate of anony-

mous visits. Our synthetic data study also shows that complete case analysis performs

reasonably well when the rate of anonymous visits is lower (even when the missingness

process is non-ignorable), suggesting that firms with modest rates of anonymous visits can
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safely ignore them in their analyses, albeit they will pay a price in efficiency.

As with any method, there are some caveats for those who want to apply our Bayesian

imputation approach to their own data. Fitting any model of repeat customer behavior

is dependent on observing customers repeatedly. In our testing, we found that the model

required at least 3-4 observed visits for a large proportion of the customer base (which

for complete case analysis means 3-4 visits after the anonymous visits are removed). For

customer behaviors that occur daily (such as media consumption or purchase of daily

consumables), this is not a difficult requirement but may be more challenging for products

with long purchase cycles such as electronics or cars.

Our imputation approach is dependent on an assumed parametric model, so it is impor-

tant that the model fits well to real data. We have shown that the model fits reasonably

well to a typical retail transaction data set, but the fit of the exponential inter-arrival

times and the probit model for activities should be checked for any specific application and

adapted if necessary.

We should also caution that there are additional hurdles to be overcome to scale this

method to larger data sets. The computational needs of our MCMC estimation procedure

increases as the data set increases in size, though this could be overcome with parallel

computation or variational Bayes methods. More importantly, as the data set increases in

size, the posterior distribution of potential choices for missing customer IDs becomes more

diffuse and more difficult to estimate. However, this is a challenge facing all imputation

methods and, in the extreme, no imputation method works well when a large number of

customers make all their visits anonymously. If a large proportion of the total customer

base is entirely unobserved, none of the methods will have enough signal to infer the

individual-level behavior of the unobserved customers (who are a large proportion of the

customer base), resulting in poor estimates for the parameters of interest to the firm.
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Appendices

Prior Distributions on Global Parameters

(1) The first prior to the population-level regression coefficients, Γ, is

ΓΓΓh|Γ0, γΓ0, γΓ0, γ0 ∼MVN(γγγ0,Γ0Γ0Γ0) (5.0.12)

where h = 1, . . . , S indexes a row of ΓΓΓ and where γγγ0 and ΓΓΓ0 are fixed hyperparameters.

(2) The prior to the population-level variance-covariance matrix that characterizes het-

erogeneity across the customers, ΩΩΩ, is

ΩΩΩ ∼ InvWishη0(ΛΛΛ0) (5.0.13)

where η0, and ΛΛΛ0 are fixed hyperparameters.

(3) The prior on the global correlations amongst the activities within visits, ΣΣΣ, is

ΣΣΣ ∼ InvWishη0(TTT 0) (5.0.14)

for fixed hyperparameters η0 and T0T0T0.

Gibbs Sampler Steps 2 through 7

(2) Sample y?y?y? for all activities M and all rows n from a truncated multivariate normal

distribution,
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y?jm|θi,Σ, U, y?j(−m)θi,Σ, U, y
?
j(−m)θi,Σ, U, y
?
j(−m) ∼ e

(− 1
2

(µ?i )′(Σ?)−1µ?i )

× {I(y?jm > 0)I(yjm = 1) + I(y?jm < 0)I(yjm = 0)} (5.0.15)

where

µ?i = (νUj + βTUj
XjνUj + βTUj
XjνUj + βTUj
Xj)

? = (µi)m + Σ12Σ12Σ12Σ22Σ22Σ22
−1(y?y?y?j(−m) −µiµiµi(−m)) (5.0.16)

and

Σ? = Σ11 −Σ12Σ12Σ12Σ22Σ22Σ22
−1Σ21Σ21Σ21 (5.0.17)

We use the “star” notation to mean the Schur compliment. For example, Γ? and Ω?

for the mth page would mean

Γ? = (Γ)m + Ω12Ω12Ω12Ω22Ω22Ω22
−1(θi(−m)θi(−m)θi(−m) − (Γ)(−m)Γ)(−m)Γ)(−m))

Ω? = Ω11 −Ω12Ω12Ω12Ω22Ω22Ω22
−1Ω21Ω21Ω21,

and

ΓΓΓ =

 (Γ)m

(Γ)(−m)(Γ)(−m)(Γ)(−m)

, (Γ)m is 1× 1, (Γ(−m))Γ(−m))Γ(−m)) is (M + 1)× 1

and ΩΩΩ =

Ω11 Ω12Ω12Ω12

Ω21Ω21Ω21 Ω22Ω22Ω22

 with size

 1× 1 1× (M + 1)

(M + 1)× 1 (M + 1)× (M + 1)


where we denote Ω11 as the variance for the mth entry.

(3) Sample user specific parameters, θθθi. This consists of three parts. First we sample

the βββi’s and νi’s,
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βiβiβi, νi|ZUj=i,Γ
?,Ω?,ΣZUj=i,Γ
?,Ω?,ΣZUj=i,Γ
?,Ω?,Σ ∼MVN(β̂̂β̂β?,VβVβVβ?) (5.0.18)

where (yyy?)? =

 y?y?y?Uj

[ΓZi]
?

 XXX? =

XXX
IIIp

, and Σ? =

ΣΣΣ 000

000 Ω?


and β̂̂β̂β? = (XT

? Σ−1
? X?)

−1XT
? Σ−1

? (y?)?,

VβVβVβ? = (XT
? Σ−1

? X?)
−1.

We use the notation [ΓZi]
? and Ω? as we did above.

Next, for (θi,(M+M×P+1), (θi,(M+M×P+2)) = (ωi,0, ωi,1), we do two Metropolis steps

since we have non-standard distributions.

First for ωi,0, we have a proposal,

ω′i0 ∼ N(ωi0, ζ
2) (5.0.19)

where ζ2 is a tuning parameter and do a Metropolis steps with

P (λi|λ−i, y, U,Γ,Ωλ−i, y, U,Γ,Ωλ−i, y, U,Γ,Ω) ∝
n∏
j=1

Lλi,tj × e
− 1

2
(θ(M+M×P+1)i−((ΓZi)

?)′(Ω?)−1(θ(M+M×P+1)i−(ΓZi)
?)

(5.0.20)

where log(λi,tj ) = ωi,0+ωi,1Hi,tj , and Lλi,tj is the product of the parts of the likelihood

that correspond to user i.

Next, for θi,(M+M×P+2) = ωi,1, we use the same density function for the Metropolis

step (as for ωi,0), except we now hold θi(M+M×P+1) fixed. We use the same tuning

parameter, ζ2, and draw a proposal

w′i,1 ∼ N(wi,1, ζ
2) (5.0.21)
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For θi(M+M×P+3) = logit δi, we also do a Metropolis step. We use η2 for the tuning

parameter, and draw

δ′i ∼ N(δi, η
2) (5.0.22)

and do a Metropolis step with

P (δi|δ−i, Y, U,Γ,Ωδ−i, Y, U,Γ,Ωδ−i, Y, U,Γ,Ω) ∝
n∏
j=1

[δ
(Vj=1)
i (1− δi)(Vj=0)

× e−
1
2

(θ(M+M×P+3)i−((ΓZi)
?)′(Ω?)−1(θ(M+M×P+3)i−(ΓZi)

?) (5.0.23)

where Vj = 0 if user i is known at visit j, and Vj = 1 is user i is anonymous.

(4) Sample ΓΓΓ,

ΓΓΓ|Ω, U, θΩ, U, θΩ, U, θ ∼ MVN(Γ̂̂Γ̂Γ?,VΓVΓVΓ?) (5.0.24)

where θ? =



θ1

...

θI

Γ1
0

...

ΓS0


X? =



Z1 0 0

0 Z1 0

0 0 Z1

...

ZI 0 0

0 ZI 0

0 0 ZI

I(M+M×P+3)∗S



, and Ω? =

Ω 0

0 Γ0



and Γ̂̂Γ̂Γ? = (XT
? Ω−1

? X?)
−1XT

? Ω−1
? θ?,

VΓVΓVΓ? = (XT
? Ω−1

? X?)
−1.

40



(5) Sample ΣΣΣ,

Σ|U,Γ,ΩΣ|U,Γ,ΩΣ|U,Γ,Ω ∼ InvWish(η0 + n,SSS) (5.0.25)

where SSS = T0T0T0 +
∑n

j=1(y?y?y?j −µUj
µUjµUj )(y

?y?y?j −µUj
µUjµUj )

T .

(6) Sample ΩΩΩ,

ΩΩΩ|ν0,Λ0Λ0Λ0, κ0,Γ, θΓ, θΓ, θ ∼ InvWish(ν0 + I,ΛΛΛn) (5.0.26)

where ΛΛΛn = Λ0Λ0Λ0 +
∑I

i=1(θθθi −ΓZΓZΓZi)(θθθi −ΓZΓZΓZi)
T

(7) Sample ZZZi,

ZZZi|Ω, U, θΩ, U, θΩ, U, θi ∼MVN(Ẑ̂ẐZ?,VZ?VZ?VZ?) (5.0.27)

where Ẑ̂ẐZ? = (ΓΓΓTΩΩΩ−1ΓΓΓ +P0P0P0)−1(ΓΓΓTΩΩΩ−1θθθi +P0ξ0P0ξ0P0ξ0)

and VZ?VZ?VZ? = (ΓΓΓTΩΩΩ−1ΓΓΓ +P0P0P0)−1

and where P0P0P0 and ξξξ0 are the prior parameters.
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